

Damage Management & Layout

2

Damage management

 Need to keep track of parts of the screen that need update
 interactor has changed appearance, moved, appeared,

disappeared, etc.
 done by “declaring damage”

 each object responsible for telling system when part of its
appearance needs update

3

Damage management

 Example: in Swing done via a call to repaint()
 takes a rectangle parameter
 Adds the specified region to the RepaintManager’s dirty list

 list of regions that need to be redrawn
 RepaintManager schedules repaints for later, can collapse

multiple dirty regions into a few larger ones to optimize
 When scheduled repaint comes up, RepaintManager calls

component’s paintImmediately() method, which calls
paintComponent(), paintChildren(), paintBorders()
 You generally never want to call this yourself
 Generally, seldom need to work with RepaintManager

directly

4

Damage Management

 Can optimize somewhat
 Multiple rectangles of damage
 Knowing about opaque objects

 But typically not worth the effort

Damage Management in Swing

5

JComponent RepaintManager

repaint() addDirtyRegion()

paintImmediately()

paintComponent()
paintBorder()

paintChildren()

Event
Dispatch
Queue

6

Typical overall “processing cycle”

loop forever

wait for event then dispatch it

➡causes actions to be invoked
and/or update interactor
state

➡typically causes damage

if (damaged_somewhere)

layout

7

Layout

 Deciding size and placement of every object
 easiest version: static layout

 objects don’t move or change size
 easy but very limiting

 hard to do dynamic content

 only good enough for simplest cases

8

Dynamic layout

 Change layout on the fly to reflect the current situation
 Need to do layout before redraw

 Can’t be done e.g., in paintComponent()
 Why?

9

Dynamic layout

 Change layout on the fly to reflect the current situation
 Need to do layout before redraw

 Can’t be done e.g., in paintComponent()
 Because you have to draw in strict order, but layout (esp.

position) may depend on size/position of things not in order
(drawn after you!)

Layout in Swing
 invalidate() method

 Called on a container to indicate that its children need to be laid out

 Called on a component to indicate that something about it has changed that
may change the overall layout (change in size, for example)

 validate() method
 Starts the process that makes an invalid layout valid--recomputes sizes and

positions to get correct layout

10

“Issues” with Swing validation
 invalidate() is often called automatically

 e.g., in response to changes to components’ state

 ... but not always
 e.g., if a JButton’s font or label changes, no automatic call to invalidate()

 Mark the button as changed by calling invalidate() on it

 Tell the container to redo layout by calling validate() on it

 In older versions of Swing you had to do this by hand
 Newer versions (post 1.2) add a shortcut: revalidate()

 Invalidates the component you call it on

 Begins the process of validating the layout, starting from the appropriate parent
container

 Validation also uses the RepaintManager

11

Layout Validation in Swing

12

JComponent RepaintManager

revalidate() addInvalidComponent()

validate()
Event

Dispatch
Queue

Container

13

Layout with containers

 Containers (parent components) can control size/position
of children
 example: rows & columns
 Two basic strategies

 Top-down (AKA outside-in)
 Bottom-up (AKA inside-out)

14

Top-down or outside-in layout

 Parent determines layout of children
 Typically used for position, but sometimes size
 Example?

15

Top-down or outside-in layout

 Parent determines layout of children
 Typically used for position, but sometimes size
 Dialog box OK / Cancel buttons

 stays at lower left

OK Cancel

16

Bottom-up or inside-out layout

 Children determine layout of parent
 Typically just size
 Example?

17

Bottom-up or inside-out layout

 Children determine layout of parent
 Typically just size
 Shrink-wrap container

 parent just big enough to hold all children
 e.g., pack() method on JWindow and JFrame

 Resizes container to just big enough to accommodate
contents’ preferredSizes

18

Which one is better?

19

Neither one is sufficient

 Need both
 May even need both in same object

 horizontal vs. vertical
 size vs. position (these interact!)

 Need more general strategies

Layout Policies in Swing
 Swing layout policies are (generally) customizable
 Some containers come with a “built-in” layout policy

 JSplitPane, JScrollPane, JTabbedPane

 Others support “pluggable” policies through LayoutManagers
 LayoutManagers installed in Containers via setLayout()

 Two interfaces (from AWT): LayoutManager and LayoutManager2

 Determines position and size of each component within a container

 Looks at components inside container:
 Uses getMinimumSize(), getPreferredSize(), getMaximumSize()

 ... but is free to ignore these

 Example LayoutManagers:
 FlowLayout, BorderLayout, GridLayout, BoxLayout, ...

20

Layout Policies in Swing
 Each LayoutManager is free to do what it wants when layout out

componens
 Can ignore components’ min/preferred/max sizes

 Can ignore (not display) components at all

 Generally, most will look at children’s requests and then:
 Size the parent component appropriately

 Position the children within that component

 So, top-down with input from child components

21

22

More general layout strategies

 Boxes and glue model
 Springs and struts model
 Constraints

23

Boxes and glue layout model

 Comes from the TeX document processing system
 Brought to UI work in Interviews toolkit (C++ under X-

windows)
 See “Composing User Interfaces with Interviews”
 Tiled composition (no overlap)

 toolkit has other mechanisms for handling overlap
 glue between components (boxes)

24

Boxes and glue layout model

 2 kinds of boxes: hbox & vbox
 do horiz and vert layout separately

 at separate levels of hierarchy
 Each component has

 natural size
 min size
 max size

25

Box sizes

 Natural size
 the size the object would normally like to be

 e.g., button: title string + border
 Min size

 minimum size that makes sense
 e.g. button may be same as natural

 Max size ...

26

Boxes and glue layout model

 Each piece of glue has:
 natural size
 min size (always 0)
 max size (often “infinite”)
 stretchability factor (0 or “infinite” ok)

 Stretchability factor controls how much this glue
stretches compared with other glue

27

Example (Paper: p13, fig 4&5)
 Two level composition

 vbox
 middle glue twice as stretchable as top and bottom

 hbox at top
 right glue is infinitely stretchable

 hbox at bottom
 left is infinitely stretchable

28

How boxes and glue works

 Boxes (components) try to stay at natural size
 expand or shrink glue first
 if we can’t fit just changing glue, only then expand or shrink

boxes
 Glue stretches / shrinks in proportion to stetchability

factor

29

Computing boxes and glue layout

 Two passes:
 bottom up then top down

 Bottom up pass:
 compute natural, min, and max sizes of parent from

natural, min, and max of children
 natural = sum of children’s natural
 min = sum of children’s min
 max = sum of children’s max

30

Computing boxes and glue layout

 Top down pass:
 window size fixed at top
 at each level in tree determine space overrun (shortfall)
 make up this overrun (shortfall) by shrinking (stretching)

 glue shrunk (stretched) first
 if reaches min (max) only then shrink (stretch

components)

31

Top down pass (cont)

 Glue is changed proportionally to stretchability factor
 example: 30 units to stretch

 glue_1 has factor 100
 glue_2 has factor 200

 stretch glue_1 by 10
 stretch glue_2 by 20

 Boxes changed evenly (within min, max)

32

What if it doesn’t fit?

 Layout breaks
 negative glue
 leads to overlap

33

Springs and struts model

 Developed independently, but can be seen a simplification
of boxes and glue model
 more intuitive (has physical model)

 Has struts, springs, and boxes
 struts are 0 stretchable glue
 springs are infinitely stretchable glue

34

Springs and struts model

 Struts
 specify a fixed offset

 Springs
 specify area that is to take up slack
 equal stretchability

 Components (boxes)
 not stretchable (min = natural = max)

35

Constraints

 A more general approach
 General mechanism for establishing and maintaining

relationships between things
 layout is one use
 several other uses in UI

 deriving appearance from data
 multiple view of same data
 automated semantic feedback

36

General form: declare relationships

 Declare “what” should hold
 this should be centered in that
 this should be 12 pixels to the right of that
 parent should be 5 pixels larger than its children

 System automatically maintains relationships under change
 system provides the “how”

37

You say what
System figures out how

 A very good deal
 But sounds too good to be true

38

You say what
System figures out how

 A very good deal
 But sounds too good to be true

 It is: can’t do this for arbitrary things (unsolvable problem)
 Good news: this can be done if you limit form of

constraints
 limits are reasonable
 can be done very efficiently

39

Form of constraints

 For UI work, typically express in form of equations
 this.x = that.x + that.w + 5

5 pixels to the right

 this.x = that.x + that.w/2 - this.w/2
centered

 this.w = 10 + max child[i].x + child[i].w
10 larger than children

The Power of Constraints

 this.x = that.x + that.w/2 - this.w/2
 What’s so cool about this?

 Power comes from dynamic computation of result
 Value isn’t just computed immediately
 Instead, saves references to objects involved in calculation
 When any operand changes, result value is automatically

recomputed
 Express relationships declaratively
 Systems updates as necessary to preserve the constraints you’ve

specified

40

How would you express this?
 this.x = that.x + that.w/2 - this.w/2
 Remember, not programming language expression!

 Parsable strings
 c = new Constraint(“this.x = that.x + that.w/2 - this.w/2”)

 Nested function calls
 c = new Constraint(Equals(this.x, Add(this.x, Sub(Div(that.w, 2), Div(this.w, 2)))))

 Operator overloading
 If your language supports, it can make it look very like the example above

 Requires defining constraint objects, overloading common arithmetic operators

41

42

Example: doing springs and struts
with constraints

 First, what does this do?

Obj1

St1 St2

Sp1 Sp2

Obj2 Obj3

Parent

43

Example: doing springs and struts
with constraints

 First, what does this do?
 Obj1 and obj3 stay fixed distance from left and right edges
 Obj2 centered between them

Obj1

St1 St2

Sp1 Sp2

Obj2 Obj3

Parent

44

Example: doing springs and struts
with constraints

 Compute how much space is left
parent.slack = parent.w - (obj1.w + obj2.w + obj3.w + st1.w + st2.w)

Obj1

St1 St2

Sp1 Sp2

Obj2 Obj3

Parent

45

Example: doing springs and struts
with constraints

 Space for each spring
parent.sp_len = parent.slack / 2

Obj1

St1 St2

Sp1 Sp2

Obj2 Obj3

Parent

46

Example: doing springs and struts
with constraints

 A little better version
parent.num_sp = 2
if parent.num_sp == 0
 parent.sp_len = 0
else
 parent.sp_len = parent.slack / parent.num_sp

Obj1

St1 St2

Sp1 Sp2

Obj2 Obj3

Parent

47

Example: doing springs and struts
with constraints

 Now assign spring sizes
sp1.w = parent.sp_len
sp2.w = parent.sp_len

Obj1

St1 St2

Sp1 Sp2

Obj2 Obj3

Parent

48

Example: doing springs and struts
with constraints

 Now do positions left to right
st1.x= 0
obj1.x = st1.x + st1.w
sp1.x = obj1.x + obj1.w
...

Obj1

St1 St2

Sp1 Sp2

Obj2 Obj3

Parent

49

Power of constraints

 If size of some component changes, system can
determine new sizes for springs, etc.
 automatically
 just change the size that has to change, the rest “just

happens”
 very nice property

50

 Bigger example

 Suppose we didn’t want to fix number of children, etc. in
advance
 don’t want to write new constraints for every layout
 instead put constraints in object classes (has to be a more

general)
 in terms of siblings & first/last child

51

Bigger (generalized) example

 First compute slack across arbitrary children
 Each strut, spring, and object:

 “before” means before considering this object
 “after” means after considering this object
 prev_sibling is a name that dynamically refers to the

object before obj at the same level in the tree
if prev_sibling = null
 obj.sl_before = parent.w
else
 obj.sl_before = prev_sibling.sl_after

52

Bigger (generalized) example

 For struts and objects:
 Roll forward, subtracting out object sizes from slack

obj.sl_after = obj.sl_before - obj.w
 For springs:

 Because they take up no space unless necessary,
springs don’t detract from the slack

spr.sl_after = spr.sl_before

53

Example of a “chained” computation

 Compute my value based on previous value
 Special case at beginning
 This now works for any number of children

 adding a new child dynamically not a problem
 Very common pattern

54

Now compute number of springs

 For springs use:
if prev_sibling == null
 spr.num_sp = 1
else
 spr.num_sp = prev_sibling.num_sp + 1

 For struts and objects use:
if prev_sibling == null
 obj.num_sp = 0
else
 obj.num_sp = prev_sibling.num_sp

55

Carry values to parent

• Propagate values computed in children up to the parent

• last_child is a dynamic reference that refers to the last child in
the parent.

parent.num_sp = last_child.num_sp

parent.slack = last_child.sl_after

 Again, don’t need to know how many children
 Correct value always at last one

56

Compute spring lengths

 Figure up the length we’ll use for each spring:

if parent.num_sp == 0
 parent.sp_len = 0
else
 parent.sp_len = parent.slack / parent.num_sp

57

Set sizes of springs & do
positions

 For springs use:
spr.w = parent.sp_len

 For all use:
if prev_sibling == null

 obj.x = 0

else

 obj.x = prev_sibling.x + prev_sibling.w

58

More complex, but...

 Only have to write it once
 put it in various superclasses
 this is basically all we have to do for springs and struts

layout (if we have constraints)
 can also do boxes and glue (slightly more complex, but not

unreasonable)
 can write other kinds of layout and mix and match using

constraints

Springs ‘n’ Struts in Swing
 Swing provides a basic constraint-based Springs’n’struts LayoutManager

 javax.swing.SpringLayout

 Allows simple arithmetic computation of constraints

59

60

Dependency graphs

 Useful to look at a system of constraints as a
“dependency graph”
 graph showing what depends on what
 two kinds of nodes (bipartite graph)

 variables (values to be constrained)
 constraints (equations that relate)

61

Dependency graphs

 Example: A = f(B, C, D)

 Edges are dependencies

A
B
C
D

f

62

Dependency graphs

 Dependency graphs chain together: X = g(A, Y)

A
B
C
D

fX

Y

g

63

Kinds of constraint systems

 Actually lots of kinds, but 2 major varieties used
in UI work
 reflect kinds of limitations imposed

 One-Way constraints
 must have a single variable on LHS
 information only flows to that variable

 can change B,C,D system will find A
 can’t do reverse (change A …)

64

One-Way constraints

 Results in a directed dependency graph:
 A = f(B,C,D)

 Normally require dependency graph to be acyclic
 cyclic graph means cyclic definition

A
B
C
D

f

65

One-Way constraints

 Problem with one-way: introduces an asymmetry
	 	 this.x = that.x + that.w + 5

 can move (change x) “that”, but not “this”

66

Multi-way constraints

 Don’t require info flow only to the left in equation
 can change A and have system find B,C,D

 Not as hard as it might seem
 most systems require you to explicitly factor the equations

for them
 provide B = g(A,C,D), etc.

67

Multi-way constraints

 Modeled as an undirected dependency graph

 No longer have asymmetry

68

Multi-way constraints

 But all is not rosy
 most efficient algorithms require that dependency graph be

a tree (acyclic undirected graph)

 OK

A
B
C
D

fX

Y

g

69

Multi-way constraints

 But: A = f(B,C,D) & X = h(D,A)

Not OK because it has a cycle (not a tree)

A
B
C
D

fX h

70

Another important issue

 A set of constraints can be:
 Over-constrained

 No valid solution that meets all constraints
 Under-constrained

 More than one solution
 sometimes infinite numbers

71

Over- and under-constrained

 Over-constrained systems
 solver will fail
 isn’t nice to do this in interactive systems
 typically need to avoid this

 need at least a “fallback” solution

72

Over- and under-constrained

 Under-constrained
 many solutions
 system has to pick one
 may not be the one you expect
 example: constraint: point stays at midpoint of

line segment
 move end point, then?

73

Over- and under-constrained

 Under-constrained
 example: constraint: point stays at midpoint of line

segment
 move end point, then?
 Lots of valid solutions

 move other end point
 collapse to one point
 etc.

74

Over- and under-constrained

 Good news is that one-way is never over- or under-
constrained (assuming acyclic)
 system makes no arbitrary choices
 pretty easy to understand

75

Over- and under-constrained

 Multi-way can be either over- or under-constrained
 have to pay for extra power somewhere
 typical approach is to over-constrain, but have a mechanism

for breaking / loosening constraints in priority order
 one way: “constraint hierarchies”

76

Over- and under-constrained

 Multi-way can be either over- or under-constrained
 unfortunately system still has to make arbitrary choices
 generally harder to understand and control

77

Implementing constraints

 Simple algorithm for one-way
 Need bookkeeping for variables
 For each keep:

 value	- the value of the var
 eqn - code to eval constraint
 dep	- list of vars we depend on
 done- boolean “mark” for alg

78

Simple algorithm for one-way
 After any change:

// reset all the marks
for each variable V do

V.done = false;

// make each var up-to-date
for each variable V do

evaluate(V);

79

Simple algorithm for one-way

evaluate(V):
if (!V.done)
V.done = true;
Parms = empty;
for each DepVar in V.dep do

Parms += evaluate(DepVar)
V.value = V.eqn(Parms)

return V.value

80

Approach for multi-way
implementation

 Use a “planner” algorithm to assign a direction to each
undirected edge of dependency graph

 Now have a one-way problem

81

Better algorithms

 “Incremental” algorithms exist for both one-way and
multi-way
 don’t recompute every variable after every (small) change
 (small) partial changes require (small) partial updates

